259 research outputs found

    Minimum-time trajectory generation for quadrotors in constrained environments

    Full text link
    In this paper, we present a novel strategy to compute minimum-time trajectories for quadrotors in constrained environments. In particular, we consider the motion in a given flying region with obstacles and take into account the physical limitations of the vehicle. Instead of approaching the optimization problem in its standard time-parameterized formulation, the proposed strategy is based on an appealing re-formulation. Transverse coordinates, expressing the distance from a frame path, are used to parameterise the vehicle position and a spatial parameter is used as independent variable. This re-formulation allows us to (i) obtain a fixed horizon problem and (ii) easily formulate (fairly complex) position constraints. The effectiveness of the proposed strategy is proven by numerical computations on two different illustrative scenarios. Moreover, the optimal trajectory generated in the second scenario is experimentally executed with a real nano-quadrotor in order to show its feasibility.Comment: arXiv admin note: text overlap with arXiv:1702.0427

    GoPRONTO: a Feedback-based Framework for Nonlinear Optimal Control

    Full text link
    In this paper we We propose GoPRONTO, a first-order, feedback-based approach to solve nonlinear discrete-time optimal control problems. This method is a generalized first-order framework based on incorporating the original dynamics into a closed-loop system. By exploiting this feedback-based shooting, we are able to reinterpret the optimal control problem as the minimization of a cost function, depending on a state-input curve, whose gradient can be computed by resorting to a suitable costate equation. This convenient reformulation gives room for a collection of accelerated numerical optimal control schemes. To corroborate the theoretical results, numerical simulations on the optimal control of a train of inverted pendulum-on-cart systems are shown.Comment: 27 pages, 8 figure

    Clinical and laboratory features associated with macrophage activation syndrome in Still's disease: data from the international AIDA Network Still's Disease Registry

    Get PDF
    : To characterize clinical and laboratory signs of patients with still's disease experiencing macrophage activation syndrome (MAS) and identify factors associated with MAS development. patients with still's disease classified according to internationally accepted criteria were enrolled in the autoInflammatory disease alliance (AIDA) still's disease registry. clinical and laboratory features observed during the inflammatory attack complicated by MAS were included in univariate and multivariate logistic regression analysis to identify factors associated to MAS development. A total of 414 patients with Still's disease were included; 39 (9.4%) of them developed MAS during clinical history. At univariate analyses, the following variables were significantly associated with MAS: classification of arthritis based on the number of joints involved (p = 0.003), liver involvement (p = 0.04), hepatomegaly (p = 0.02), hepatic failure (p = 0.01), axillary lymphadenopathy (p = 0.04), pneumonia (p = 0.03), acute respiratory distress syndrome (p < 0.001), platelet abnormalities (p < 0.001), high serum ferritin levels (p = 0.009), abnormal liver function tests (p = 0.009), hypoalbuminemia (p = 0.002), increased LDH (p = 0.001), and LDH serum levels (p < 0.001). at multivariate analysis, hepatomegaly (OR 8.7, 95% CI 1.9-52.6, p = 0.007) and monoarthritis (OR 15.8, 95% CI 2.9-97.1, p = 0.001), were directly associated with MAS, while the decade of life at Still's disease onset (OR 0.6, 95% CI 0.4-0.9, p = 0.045), a normal platelet count (OR 0.1, 95% CI 0.01-0.8, p = 0.034) or thrombocytosis (OR 0.01, 95% CI 0.0-0.2, p = 0.008) resulted to be protective. clinical and laboratory factors associated with MAS development have been identified in a large cohort of patients based on real-life data

    An optimal control approach to the design of periodic orbits for mechanical systems with impacts

    Get PDF
    In this paper we study the problem of designing periodic orbits for a special class of hybrid systems, namely mechanical systems with underactuated continuous dynamics and impulse events. We approach the problem by means of optimal control. Specifically, we design an optimal control based strategy that combines trajectory optimization, dynamics embedding, optimal control relaxation and root finding techniques. The proposed strategy allows us to design, in a numerically stable manner, trajectories that optimize a desired cost and satisfy boundary state constraints consistent with a periodic orbit. To show the effectiveness of the proposed strategy, we perform numerical computations on a compass biped model with torso

    Computing minimum-time trajectories for quadrotors via transverse coordinates

    Get PDF
    In this paper we present a novel strategy to compute minimum-time trajectories for quadrotors. In particular, we consider the motion in constrained environments, taking into account the physical limitations of the vehicle. Instead of approaching the optimization problem in its standard time-parameterized formulation, the proposed strategy is based on an appealing re-formulation. Transverse coordinates, expressing the distance from a "reference" path, are used to parameterize the vehicle position and a spatial parameter is used as independent variable. This re-formulation allows us to (i) obtain a fixed horizon problem and (ii) easily formulate (even complex) position constraints. The effectiveness of the proposed strategy is proven by numerical computations on two different illustrative scenarios

    An optimal control approach to the design of periodic orbits for mechanical systems with impacts

    Get PDF
    In this paper we study the problem of designing periodic orbits for a special class of hybrid systems, namely mechanical systems with underactuated continuous dynamics and impulse events. We approach the problem by means of optimal control. Specifically, we design an optimal control based strategy that combines trajectory optimization, dynamics embedding, optimal control relaxation and root finding techniques. The proposed strategy allows us to design, in a numerically stable manner, trajectories that optimize a desired cost and satisfy boundary state constraints consistent with a periodic orbit. To show the effectiveness of the proposed strategy, we perform numerical computations on a compass biped model with torso

    Minimum-Time Trajectory Generation for Quadrotors in Constrained Environments

    No full text

    From tracking to robust maneuver regulation: An easy-to-design approach for VTOL aerial robots

    No full text
    International audienceIn this paper we present a maneuver regulation scheme for Vertical TakeOff and Landing (VTOL) micro aerial vehicles (MAV). Differently from standard trajectory tracking, maneuver regulation has an intrinsic robustness due to the fact that the vehicle is not required to chase a virtual target, but just to stay on a (properly designed) desired path with a given velocity profile. In this paper we show how a robust maneuver regulation controller can be easily designed by converting an existing tracking scheme. The resulting maneuvering controller has three main appealing features, namely it: (i) inherits the robustness properties of the tracking controller, (ii) gains the appealing features of maneuver regulation, and (iii) does not need any additional tuning with respect to the tracking controller. We prove the correctness of the proposed scheme and show its effectiveness in experiments on a nano-quadrotor. In particular, we show on a nontrivial maneuver how external disturbances acting on the quadrotor cause instabilities in the standard tracking, while marginally affect the maneuver regulation scheme
    • 

    corecore